
The Thompson sampling algorithm and applications
to contextual bandits

Prithvijit Chakrabarty
Department of Computer Science

University of Massachusetts
Amherst, MA 01002

pchakrabarty@umass.edu

Abstract

Thompson sampling is a Bayesian algorithm to handle the exploration/exploitation
dilemma in the multi-armed bandit (MAB) problem. Despite a number of empirical
studies demonstrating its effectiveness in practice, there is limited theoretical
understanding of its worst case performance. Contextual bandits is a generalization
of the MAB problem, which requires learning a policy instead of the best arm.
This report discusses the regret bound on applying Thompson sampling applied
to contextual bandits. This is an open problem. Previous theoretical results on
the algorithm either focused on the stochastic MAB or made strong assumptions
on the policy class used in the contextual setting. This report briefly describes
the key ideas used for the proofs in these results. It also discusses the difficulties
in applying them directly in the general contextual bandits setting, with possible
workarounds.

1 Introduction

The exploration-exploitation dilemma is a problem that arises in many settings which require learning
a decision strategy. This is formally modeled as the multi-armed bandit (MAB) problem. The "arms"
refer to the various actions a learner might take (belong to a set of armsA). Every action is associated
with a reward. The goal of the learner is to maximize its rewards over time. At each timestep t, the
learner selects an arm at ∈ A and receives the corresponding reward rt(at). The goal of the learner
is to maximize its reward over time. A related quantity is the regret R(T), which defined as the
difference between the reward obtained by the learner (rt(at)) and the maximum possible reward
(rt(a∗t), where a∗t is the appropriate action at time t).

R(T) =

T∑
t=1

r(a∗t)− rt(at)

The learner can maximizing the reward by minimizing the regret. There are many variants of the
MAB problem and algorithms to solve them. This report discusses the Thompson Sampling algorithm
and its possible to contextual bandits.

1.1 Thompson Sampling

Thompson Sampling is a heuristic for solving the explore/exploit problem. Initially proposed
in Thompson [1933] for drug trials, interest in the algorithm rose again with the popularity of
reinforcement and fast learning algorithms which require effective exploration schemes. Ortega and
Braun [2010],Strens [2000] applied the algorithm in reinforcement learning. Wyatt [2001] studied a

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

closely related algorithm in the reinforcement learning setting. Thompson sampling is a Bayesian
algorithm. At every timestep the algorithm plays the best arm according to its current estimates (the
prior). On receiving a reward r, it updates its estimate (the posterior) using Bayes rule:

P [θ|r] =
P [r|θ]P [θ]∫
P [r|θ]P [θ]dθ

If the learner receives Bernoulli feedback (r ∈ {0, 1}), a convenient choice for the posterior distribu-
tion is the Beta distribution as it is the conjugate prior. In this case, the posterior for an arm a can be
maintained simply as a beta distribution whose parameters are the number of times that a succeeded
or failed.

Algorithm 1: Thompson Sampling for Beta-Bernoulli bandits
1 For each arm a, set Sa = Fa = 1 (success and failure count)
2 foreach t = 0, ..., T do
3 For each arm a ∈ A sample reward estimate rt(a) ∼ β(Sa, Fa)
4 Play at = argmax(rt(a))
5 Observe reward rt(at)
6 Update posterior parameters: Sat = Sat + rt(at), Fat = Fat + (1− rt(at))

Though there are provably optimal alternatives to Thompson sampling (the UCB family of algo-
rithms), studies such as Graepel et al. [2010], Scott [2010] Granmo [2010] and show that it often
performs better in practice. It is also easier to implement than most exploration schemes and allows in-
corporating prior beliefs without modification to the algorithm. Chapelle and Li [2011] demonstrates
empirically that the Thompson Sampling outperformed LinUCB in training a logistic regression
model for news article recommendation. Despite this rise in interest, there was no theoretical under-
standing of the algorithm until 2012. Agrawal and Goyal [2012] derived the first guarantees for the
algorithm, showing that for a 2-armed stochastic bandit problem, the regret is bounded by

E[R(T)] ≤ O
(lnT

∆
+

1

∆3

)
and for N-armed bandits, the regret is

E[R(T)] ≤ O
((N∑

i=2

1

∆2
i

)2

lnT
)

Here, ∆i refers to the suboptimality of an arm, i.e., ∆i = µi − µ∗, where µi is the mean reward for
arm i and µ∗ is the mean reward for the best arm. After this, Kaufmann et al. [2012] proved that this
bound is close to the lower bound given by Lai and Robbin for bandit problems Lai and Robbins
[1985], proving that for the stochastic multi-armed bandits Thompson Sampling is indeed optimal.

1.2 Contextual bandits

Contextual bandits is a variation of the MAB problem in which the learner is given extra context or
"side information" at every timestep. The rewards each arm will produce depend on this information
and the appropriate arm to be played can be computed using the context and a policy. The learner is
required to find a good policy while receiving partial feedback (feedback only on the arm it selected).

Formally, at every timestep t, the learner observes a context xt drawn from a context space X and
plays one of N arms at ∈ A (if the arms have numerical labels, A = [N]). It then receives a reward
rt(at) ∈ [0, 1], depending its choice of arm. The goal is to learn a policy π : X → A which maps a
context to the appropriate arm. We assume that the learner competes within a policy class Π, and
must learn the best possible policy π∗ in this class. In this setting, the maximizing the reward is
equivalent to minimizing the regretR(T):

R(T) =

T∑
t=1

rt(π
∗(xt))− rt(at)

2

The contextual bandits problem was introduced by Langford and Zhang [2008]. In 2014, Agrawal
and Goyal [2013] proved regret bounds for Thompson sampling applied to contextual bandits with
linear payoffs (the reward vector can be computed from the context: rt = wTxt).

R(T) ≤ O(d
√
T log(N)(ln(T) +

√
ln(T)ln(

1

δ
)))

= Õ(d
√
T log(N))

Contextual bandits with linear payoffs have a lower bound of Ω(d
√
T), which was given in Dani

et al. [2008], when the number of arms are allowed to be infinite. In the finite N armed setting, Chu
et al. [2011] proved a lower bound to be Ω(

√
dT) when d2 ≤ T .

The regret bound for Thompson sampling differ from the lower bound by a factor of
√

log(N). If the
number of arms is exponential in d, the regret bound above would be Õ(d3/2

√
T), which differs from

the optimal a factor of
√
d. There are algorithms which do achieve the theoretical lower bound. For

example, Bubeck et al. [2012], give an algorithm which achieves a regret bound of O(
√
dT log(N))

for finite arms and O(d
√
T) for infinite arms. Agrawal and Goyal [2013] suggests that the factor of√

d is the what the algorithm pays for its efficiency. They note that Bubeck et al. [2012] needs to
maintain a distribution linear in the number of arms, while Chu et al. [2011] and Dani et al. [2008]
effectively require solving an NP complete problem at every round. They also suggest that this factor
might not be eliminated for any efficient algorithm to this problem. As an example, they cite is
Algorithm 3.2 in Dani et al. [2008] which also suffers the extra factor in its regret bound.

It is worth noting that this bound holds under the realizability condition, i.e., there exists an ideal w∗,
such that w∗Txt will always result in the correct estimate of the reward. The realizability assumption
has been quite common in related work on contextual bandits Filippi et al. [2010], Auer [2002],
Chu et al. [2011] all assume the realizability. Finding the regret bound of Thompson sampling for
contextual bandits without this assumption is an open problem.

2 Problem setting

There are N arms. At each timestep t, the learner is presented with a context xt ∈ X . The learner
has access to a function class F , consisting of functions fθ : X → R. Here, θ ∈ Θ is a parameter
vector which can be used to completely specify any function in F . Thus, sampling a value from a
distribution over Θ corresponds to sampling a function fθ from F . There exists a reward function
r : X → R per arm which correctly predicts the reward given the context. Also, for each arm a, θ∗a is
the parameter vector for the function in F which performs best in predicting its reward (closest to the
true function r).

Algorithm 2: Thompson Sampling for contextual bandits
1 For each arm a, set posterior Pa[θ|r] = Uniform(Θ)
2 foreach t = 0, ..., T do
3 Observer context xt
4 For each a = 1,...,N sample a model θa(t) ∼ Pa[θ|r]
5 Play at = argmaxfθa(t)(xt)
6 Observe reward r = rt(at, xt)
7 Update posterior for the selected arm: Pat [θ|r, xt] ∝ Pat [r|θ, xt].Pat [θ]

Note that this is an equivalent, but slightly different formulation from the standard contextual bandits,
where the policies directly map contexts to arms. In this setting, fθ behaves as a value function. The
output of fθ followed by the argmax operation collectively behaves as the policy.

3 Challenges in proof

This section discusses the difficulties in finding the regret bound for Thompson sampling without
any assumption on the policy class. The proof techniques in Agrawal and Goyal [2012] used for the

3

multi-armed bandits are used reference. These also form the basis of the proof for linear contextual
bandits Agrawal and Goyal [2013]. The presented difficulties prevent us applying those techniques
directly in the contextual bandits setting.

3.1 Posterior computation

Consider using a normal distribution as the likelihood function. Then, P [rt|θ, xt] = N (fθ(xt), σ
2).

For simplicity, let σ = 1. This yields:

P [rt|θ, xt] = N (fθ(xt), 1) ∝ exp
(
− (rt − fθ(xt))2

2

)
Now, at each timestep t, the algorithm updates the posterior as:

P [θ|rt, xt] ∝ P [rt|θ, xt].P [θ]

Unrolling this in time, at timestep T , we have:

P [θ|rT , xT] ∝
T∏
t=1

P [rt|θ, xt].P [θ0]

=
(T∏
t=1

exp
(
− (rt − fθ(xt))2

2

))
.P [θ0]

= exp
(
− 1

2

T∑
t=1

(rt − fθ(xt))2
)
.P [θ0] (1)

Further simplifying this expression requires making assumptions on the form of the function class F .
This poses a problem, as we will not have a closed-form solution for the posterior distribution. In
Agrawal and Goyal [2013], an important element in the proof was using the form fθ(xt) = θTxt
(due to the linear payoff assumption) to show that the posterior will also be a normal distribution. the

Possible workaround Without simplifying the expression for the posterior, it is clear that this
procedure behaves like a weighting algorithm. It places a high probability mass on functions in F
which reduce the squared error on the observed data (the term − 1

2

∑T
t=1(rt − fθ(xt))2 in equation

(1) is essentially the squared loss that fθ suffers on the observed samples).

In Agrawal and Goyal [2012], the proof used the Hoeffding inequality to derive the minimum number
of times an arm must be played to get a good estimate of the mean reward:

L =
lnT

∆2

After L plays of an arm, its posterior will be concentrated around the true mean reward. This is
not applicable here, as we are not estimating the mean. However, as the algorithm is effectively
minimizing the squared loss and placing a high probability mass over the best models, we can lower
bound the number of times an arm should be played with the sample complexity of the function class
F .

Using a fat shattering dimension F is essentially a class of regression functions (mapping contexts
to rewards in R). Thus, we cannot use the VC dimension to estimate the sample complexity. I am not
sure if this is correct, but for such a class, Pdim(F), the Pollard pseduo dimension (or a fat shattering
dimension at scale ε) of the F can be used to estimate the sample complexity Sample complexity
[2010]. As F maps [0, 1], we have:

NF = O
(Pdim(F) ln 1

ε + ln 1
δ

ε2

)
(2)

Further, consider the 2-armed scenario, let ∆ = minxt fθ∗0 (xt) − fθ∗1 (xt). ∆ is the minimum
difference in true rewards of the arms across all possible contexts. Thus, to pick the correct arm, we
must have an estimator fθ with an error margin ε ≤ ∆

4 . Using this and setting δ = 1
T , we have:

NF = O
(Pdim(F) ln 4

∆ + lnT

∆2

)
(3)

4

This lower bound is similar to that for the multi-armed bandits (L), with an extra term dependent on
F .

Using the Rademacher complexity An alternative approach might be to use the Rademacher
complexity of the function class F . LetR denote the Rademacher complexity of F with the squared
loss. With N samples, we have the generalization bound:

ε ≤ O

(
R+

√
log 4

δ

N

)
(4)

Solving this for N , we get an expression for NF

N =
log 4

δ

(ε−R)2

Again, setting δ = 1
T and ε = ∆

4 , we get a bound similar to the expression for L, but with an extra
term dependent on the function class F :

N = O
(log T

(∆−R)2

)
(5)

3.1.1 Lack of ordering in the parameter space

Given the minimum number of plays of each arm, the proof in Agrawal and Goyal [2012] proceeds by
case analysis. Consider one possible case: a 2-armed stochastic bandit problem where arm 1 has been
played L times. The posterior for this arm will be concentrated around its true mean. Thus, the reward
samples drawn for this arm will be close to µ1. Now, we can approximate the probability of selecting
arm 2 by computing P[θ2 ≥ µ1], where θ2 is a sample drawn from the posterior on arm 2 (let this be
Q2(r)). As the Q2 is a distribution over the reward space, we have P[θ2 ≥ µ1] =

∫∞
µ1
Q2(r)dr. With

the closed form expression for Q2, this can be computed or approximated (Agrawal and Goyal [2012]
show that for Beta-Bernoulli bandits, this can be approximated with a geometric random variable).

Now, consider the same case in the contextual setting. At timestep T , arm 1 has been played NF
times. Thus, a parameter vector θ1 sampled from this arm will accurately model the reward, i.e.,
fθ1(xt) ≈ r1(xt). Also, let the true reward for the second arm be r2(xt) such that r1(xt)− r2(xt) =
∆(xt). The probability of playing arm 2 will be:

P[fθ2(xt) ≥ fθ1(xt)]

≈ P[fθ2(xt) ≥ r1(xt)]

= P[fθ2(xt) ≥ r2(xt) + ∆(xt)]

= P[fθ2(xt)− r2(xt) ≥ ∆(xt)] (6)

Thus, computing the probability of playing arm 2 is equivalent to computing the following:
If we learn a function class F to minimize the squared error on n samples (n is less than the sample
complexity of F), what is the probability that the error on a new sample will be greater than ∆(xt).

I am not sure if there is a way to compute this. Intuitively, this seems to be related to the mistake
bound for learning the function class F .

Possible workaround We can try to find an expression for ε, given the number of samples. This is
where the Rademacher complexity is easier to use than the shattering number. If an arm has been
played n times, rearranging equation (4) gives:

nε2 + Pdim(F) ln ε ≤ ln
1

δ

which is a transcendental equation and is difficult to solve (though we can get an approximate upper
bound for ε). On the other hand, with the Rademacher complexity, equation (4) directly gives an upper

5

bound for ε. Now, from equation (6), we are interested in the quantity fθ2(xt)− r2(xt). However, ε
will be equivalent to |fθ2(xt)− r2(xt)|.
Intuitively, a generalization bound will give the probability that the distance between the prediction
and the true value is greater than a threshold. However, for the case analysis we require, we specifically
need the probability of the prediction being greater than or less than the true value.

I am not sure how this can be handled. If there is a way to compute this, then we can proceed along
the lines of the case analysis and to bound the regret till the timestep when the models on both arms
have been learned.

4 Conclusion

This report described the Thompson sampling algorithm and its application to the contextual bandits
problem. The algorithm is modeled as a training algorithm to learn a policy. A Gaussian likelihood
function is used, and no assumptions were made on the policy class.

The proof techniques used to analyze the algorithm in other settings cannot be applied to this
problem. In particular, the posterior computation is difficult without knowledge of the policy class. A
workaround is suggested which may be useful in finding a proof without explicitly computing the
posterior. A second problem arises in estimating the probability of selecting one arm over the other.
With generalization bounds, we can estimate the probability of an error, which is will bound the
distance to the true value. However, we specifically require bounds on the probability the estimates
are greater or less than a certain threshold. This quantity is hard to compute. If there is a workaround,
it may be used to continue the proof along the same lines. If not, we require a different approach for
the prove the regret bound.

References
Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.

In Conference on Learning Theory, pages 39–1, 2012.

Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In
International Conference on Machine Learning, pages 127–135, 2013.

Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine
Learning Research, 3(Nov):397–422, 2002.

Sébastien Bubeck, Nicolo Cesa-Bianchi, and Sham Kakade. Towards minimax policies for online
linear optimization with bandit feedback. In Annual Conference on Learning Theory, volume 23,
pages 41–1. Microtome, 2012.

Olivier Chapelle and Lihong Li. An empirical evaluation of thompson sampling. In Advances in
neural information processing systems, pages 2249–2257, 2011.

Wei Chu, Lihong Li, Lev Reyzin, and Robert E Schapire. Contextual bandits with linear payoff
functions. In International Conference on Artificial Intelligence and Statistics, pages 208–214,
2011.

Varsha Dani, Thomas P Hayes, and Sham M Kakade. Stochastic linear optimization under bandit
feedback. In COLT, pages 355–366, 2008.

Sarah Filippi, Olivier Cappe, Aurélien Garivier, and Csaba Szepesvári. Parametric bandits: The
generalized linear case. In Advances in Neural Information Processing Systems, pages 586–594,
2010.

Thore Graepel, Joaquin Q Candela, Thomas Borchert, and Ralf Herbrich. Web-scale bayesian
click-through rate prediction for sponsored search advertising in microsoft’s bing search engine.
In Proceedings of the 27th international conference on machine learning (ICML-10), pages 13–20,
2010.

Ole-Christoffer Granmo. Solving two-armed bernoulli bandit problems using a bayesian learning
automaton. International Journal of Intelligent Computing and Cybernetics, 3(2):207–234, 2010.

6

Emilie Kaufmann, Nathaniel Korda, and Rémi Munos. Thompson sampling: An asymptotically
optimal finite-time analysis. In ALT, volume 12, pages 199–213. Springer, 2012.

Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. Advances in
applied mathematics, 6(1):4–22, 1985.

John Langford and Tong Zhang. The epoch-greedy algorithm for multi-armed bandits with side
information. In Advances in neural information processing systems, pages 817–824, 2008.

Pedro A Ortega and Daniel A Braun. Linearly parametrized bandits. Journal of Artificial Intelligence
Research, 38:475–511, 2010.

Sample complexity. Sample complexity — Wikipedia, the free encyclopedia, 2010. URL https:
//en.wikipedia.org/wiki/Sample_complexity. [Online; accessed 19-December-2017].

Steven L Scott. A modern bayesian look at the multi-armed bandit. Applied Stochastic Models in
Business and Industry, 26(6):639–658, 2010.

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, pages 943–950, 2000.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Jeremy L Wyatt. Exploration control in reinforcement learning using optimistic model selection. In
ICML, pages 593–600, 2001.

7

https://en.wikipedia.org/wiki/Sample_complexity
https://en.wikipedia.org/wiki/Sample_complexity

	Introduction
	Thompson Sampling
	Contextual bandits

	Problem setting
	Challenges in proof
	Posterior computation
	Lack of ordering in the parameter space

	Conclusion

