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Abstract: 

of integers. 

 

Introduction: 

No polynomial time algorithm to factorize integers is known. There is however, an algorithm to 

factorize an integer into a set of pairwise coprime numbers. This algorithm, called factor 

refinement, was introduced by Bach, Driscoll and Shallit in [1], and allowed factoring an integer 

into coprime numbers in quadratic time. The approach was further investigated by Bernstein in [2], 

where he introduced an algorithm to do same in approximately linear time. Indeed, in many 

applications, factor refinement can be used instead of integer factorization. 

 Factor refinement is thus closely linked to integer factorization. This could be useful in 

investigating the complexity class of integer factorization. Instead of directly looking for a 

polynomial time algorithm, or proof of NP completeness of factoring, an auxiliary problem, the PC 

problem is introduced. This is linked to both factor refinement and integer factorization. This paper 

proves the intermediate result that the PC problem is NP complete. In following work, I will 

describe the relationship between the PC problem and integer factorization. 

 

Notations: 

 G is a graph with vertex set V and edge set E 

 �̅� is the complement of graph G 

 E(G) is the edge set of graph G 

 e(v1, v2) represents an edge from vertex v1 to v2 

 L :(𝑉 ∪ 𝐸)           Z is the label function that maps vertices and edges to integral labels 

 

The PC problem: 

Pairwise coprime set: 

A set S is called pairwise coprime if and only if gcd(𝑝1, 𝑝2) = 1∀𝑝1, 𝑝2 ∈ 𝑆  

 

The PC problem: 

Given a set of integers, the PC problem is to find the largest subset that is pairwise coprime. 

 The factor refinement algorithm generates a pairwise coprime set of numbers, all of which 

are factors of a given integer (called the coprime base set of the integer in [2]). The PC problem 

may be related to the integer factorization problem through the fact that every integer can be 

decomposed into a corresponding coprime base set. 

 

NP Completeness: 

The PC problem is proven to be NP complete by reduction from the max clique problem. 

 

Algorithm 2: Reduction from clique to PC 

Input: Graph G = (V, E). 

Output: Set of vertex labels for the vertices of G 

 

The algorithm maintains a list of labels L for each node and edge. L = {(v1, p1), (v2, p2), (v3, p3)... 

(eN, pN)}, where p1, p2, p3, ..., pN are distinct primes. 

 

for e(v1,v2) in E(�̅�) begin: 

This proves the NP completeness of the search for the largest pairwise coprime subset in a set



 L(v1)            L(v1) * L(e) 

 L(v2)            L(v2) * L(e) 

end 

return L 

 

The set of vertex labels L is the input to the corresponding PC problem. 

 

Theorem: 

The graph G contains a clique of size 'k' if and only if its corresponding label set contains a pairwise 

coprime subset with 'k' elements. 

Proof: 

Consider a subgraph SG = {v1, v2, v3, ..., vk}. The corresponding set of labels will be Sk = {L(v1), 

L(v2), L(v3), ..., L(vk)}. Algorithm 2 ensures that labels L(v1) and L(v2) have a common factor if and 

only if e(v1 , v2) is in E. 

1. Sk is pairwise coprime: This implies that e(vi, vj) is in E for all (vi, vj) in SG. Thus, SG must be 

a clique. 

2. Sk is not pairwise coprime: This implies that there exists at least one pair L(vi), L(vj) that are 

not pairwise coprime and the corresponding edge e(v1,v2) is not in E. Thus, SG will not be a 

clique if Sk is not pairwise coprime. 

Thus, G contains a clique of size 'k' if and only if S contains a pairwise coprime subset with 'k' 

elements. 

 

Theorem: 

The length of the labels generated by algorithm 1 is O(|V|+|E|). 

Proof: 

The labels of the vertices in G are initialized to |V| distinct primes. To restrict the size of the 

numbers generated as labels, we use the first |V| prime numbers to label the vertices and the next |E| 

primes to label the edges before running algorithm 1. Due to the labelling algorithm, the final label 

of a vertex vj will have the maximum value if it is connected to all the other vertices in G. In this 

case,  

L(vj) = ∏ 𝑝𝑖
∣𝑉∣+∣𝐸∣
𝑖=∣𝑉∣+1 < ∏ 𝑝𝑖

∣𝑉∣+|𝐸|
𝑖=0 . 

Thus, 

L(v ) < prim(|V|+|E|) ∀ |V|,|E| > 0  (1) 

). 

Consider N(x) such that N(x) = number of digits in x. If the vertex vj has the highest label value, the 

number of digits in L(vj) will be: 

N(L(vj)) = (⌊log (𝐿(𝑣𝑗))⌋ + 1) < log(𝑝𝑟𝑖𝑚(∣𝑉∣ + |𝐸|)). 

The logarithm of the primorial function is the first Chebyshev function 𝜃(∣𝑉∣ + |𝐸|), which grows 

linearly, as proved in [3]. Thus, the number of digits in the labels of the vertices of G is generated 

by the labelling algorithm is O(|V|+|E|). 

 

Theorem: 

The reduction of the clique to the PC problem runs in polynomial time. 

Proof: 

Algorithm 2 traverses the list of edges in E and performs 2 multiplications for every edge. The 

number of digits of the labels is O(|V|+|E|). Using a simple multiplication algorithm running in 

quadratic time yields the product in O((|V|+|E|)2). Thus, the complexity of generating the label set L 

is O(|E|.(|V|+|E|)2). 

 

Conclusion and further work: 

classifying the complexity of integer factorization. In future papers, I will investigate the exact 

where prim() is the primorial function. The value of the labels is thus bounded by prim(|V|+|E|

This proved the NP completeness of the PC problem, which may serve as an auxiliary to 



relationship of this problem with integer factorization. 
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