
Selective Forgetting to Save Capacity in Neural Networks for Continual Learning

Prithvijit Chakrabarty
University of Massachusetts

Amherst
pchakrabarty@umass.edu

Abstract

Catastrophic interference is a well known problem with
neural networks. Training on a task B after task A over-
writes the weights and degrades performance on A. This re-
port investigates an interesting and closely related feature:
selective forgetting.

Preventing catastrophic interference will allow a model
to learn multiple tasks sequentially. Selective forgetting al-
lows the user to then select a learned task to be forgot-
ten. This can be used to save model capacity in a continual
learning setting. Given a stream of incoming tasks, a con-
tinual learning agent may need to learn many tasks, each of
which appears for a short period of time. Instead of using
large network to learn and remember all tasks, a smaller
model may be employed. This uses a policy to identify unim-
portant tasks and forgets them periodically to free up capac-
ity. A simple modification to the Elastic Weight Consolida-
tion algorithm enables this feature. The report investigates
its properties with experiments on permuted MNIST tasks
and demonstrates its benefits by applying it to model con-
tinual face recognition.

1. Introduction
Catastrophic interference is a well known limitation of

neural networks. Once trained to perform task A, training
the same network on task B may diminish performance on
A. Initially identified in [12], numerous attempts have been
made over the years to solve this problem ([6], [17], [2],
[15]).

Continual learning requires an agent to learn tasks from
a stream of incoming data. The data may be change over
time, requiring the agent to be adaptive and learn multi-
ple tasks. At various points in time, the agent may have
to learn several tasks together, or sequentially. Clearly, if
the data stream presents task A and then task B, failing to
prevent catastrophic forgetting will leave the agent perform-
ing poorly on A throughout the rest of the stream. Thus,
studying this problem is vital for developing autonomous

or lifelong learning systems.

1.1. Selective Forgetting

Prior work largely focuses on preventing catastrophic
forgetting. While this is necessary, it is only one of the ele-
ments required to perform well while learning continually.
We suggest that to work on a real world data stream with
a large number of tasks, the ability to forget unimportant
tasks can be significantly helpful too.

Any model with a finite, fixed size must compromise its
effective capacity in order to remember old tasks. If we
have a large number of tasks over a long period of time,
remembering every task will eventually lead the model to
saturation.

A naive solution would be to increase the model capacity
as new tasks are introduced (adding new hidden units). This
is cumbersome, requiring direct changes to the architecture
every time it saturates, which is a slow procedure. Besides,
we may be able to identify tasks which will not appear after
a certain time. The weights learned for these tasks will not
contribute at all to the future performance and preserving
them is a waste of memory. This is unlikely to be a scalable
solution.

Instead of steadily growing the model, a mechanism to
selectively forget tasks would work faster and also save
memory. The model can be trained till saturation, following
which we may specify a ”forget policy” in order to the se-
lect which tasks to overwrite as new ones are learned. It is
worth noting that schemes which use dynamic architectures
(such as [11]) may be indispensable. Indeed, if the num-
ber of tasks to be handled simultaneously increases dramat-
ically, we cannot use a small network to learn them all, and
will be forced to add more capacity. However, the ability to
selectively forget tasks gives us the option to intelligently
choose between adding more capacity or simply forgetting
a useless task. This will be particularly useful in scenarios
where the model must learn a large number of simple tasks,
most of which will are useful only for a short period of time.

Besides saving capacity, selective forgetting may have
other uses which are useful in practice. For example, con-

4321



sider a scenario in which we have trained a model on multi-
ple tasks, using some scheme to prevent catastrophic forget-
ting. We then identify a task which was trained with incor-
rect labels or training data. With forgetting, we can simply
forget this task and train with the correct data on the same
head.

1.2. Related Work

A variety of approaches have been proposed to pre-
vent forgetting in neural networks. However, these may be
grouped into a small number of broad categories. Section
2 in [20] describes one way to categorize them. The sur-
veys [13] and [8] describe further details of these categories
and also other ways of classifying them. For selective for-
getting, it will be useful to look at 2 of these broad types
of approaches, as the problem is significantly different for
these categories:

1. Regularization methods: These approaches ensure
that the optimization for the new task does not affect the
previously seen tasks by penalizing a change made to pa-
rameters useful for previous tasks. [1] uses a genetic algo-
rithm to identify the routes in the network which are active
for a given task and block them while learning the new task.
[11] uses the response of the previously learned model on
the new task as a regularization factor and adds another head
for the new task.

While these methods explicitly block selected weight up-
dates or augment a part of the architecture, a more conve-
nient is a ”soft” weighting which indicates the importance
of connections. This is done in [9] and [20]. Both these
works have a connection to ”Optimal Brain Damage” [10],
where unimportant weights in a trained model were dis-
covered to reduce the number of parameters. [9] proposes
Elastic Weight Consolidation, which identifies important
weights in between training 2 tasks using the Fisher infor-
mation. On the other hand, Synaptic Intelligence [20] runs
in an online manner, maintaining a dynamic scale which
asses the importance of a weight depending on its activ-
ity. In practice, both methods show similar performance
([20] compared them on the standard benchmarks of Per-
muted MNIST [4], split MNIST and Split CIFAR 10/100 to
demonstrate this).

2. Rehearsal methods: These methods save data from
previous tasks and use it as replay memory to prevent for-
getting. [3] introduced GeppNet+STM, which incremen-
tally learned MNIST digit classes. This stores the entire
training set from previous tasks. [16] demonstrated that, we
can achieve good performance by retaining only a small set
of exemplar samples from previous classes.

More recently, the development of generative models
has led to increased attention on pseudo-rehearsal methods.
Here, instead of directly saving training samples, a gener-
ator provides samples of old classes when a new class is

added. [19], [7] and [18] are variants of this idea.
In practice, regularization methods work well for multi-

task problems where the data of different tasks are inde-
pendent. Rehearsal based methods seem to be effective for
incremental class learning. This is mentioned in [13] and
experimentally demonstrated in [8].

The scheme for selective forgetting will be different for
these two approaches. Forgetting in the multi-task setting
requires forgetting an entire task, whereas the same in in-
cremental learning involves specifically reducing the perfor-
mance on a single class (in order to replace it with another
class). Solving both versions will have significant practical
utility.

This project focuses on selective forgetting with regular-
ization based methods. Performing the same in the incre-
mental learning setting is left for future work.

2. Selective Forgetting with EWC
The algorithm proposed in [9] is Elastic Weight Consol-

idation or EWC. Consider a model M dependent on a pa-
rameter vector θ. At the current timestep, M has learned
N tasks (T1, ..., TN ) sequentially, i.e., the current parame-
ter vector is θ∗ with which M performs well on all tasks
seen so far. Let the data corresponding to these tasks be
DT1 ,DT2 , ...,DTN

.
Learning a new task TN+1 involves finding a new θ for

which the loss on all tasks including the new one is low.
With EWC, this is achieved by minimizing the following
loss function:

L(θ) = LTN+1
(θ) +

∑
i

λ

2
(FD1,...,DN

)i(θi − θ∗i )2

where (FD1,...,DN
)i is the entry on the diagonal of the

Fisher information for the ith parameter of M , computed
using the data for all tasks 1 to N . λ is a scaling factor
which is chosen as a hyperparameter in practice (see sec-
tion 2.2).

2.1. Saturation Behavior

The regularization term in EWC penalizes changes made
to weights learned for the previous tasks. If the tasks are in-
dependent, the network must allocate new weights for each
task. As we learn new tasks, more weights are reserved,
which reduces the effective capacity of the network.

To study this, we perform a simple empirical capac-
ity measuring experiment. The experiment in [9] is repli-
cated using networks of varying sizes. This requires learn-
ing 10 tasks from the permuted MNIST benchmark [4]. A
large network (2 layers with H = 1000 hidden units each)
learns all 10 tasks without a drastic drop in performance
(it achieves an accuracy over 0.96 on all tasks). Using
H = 100 hidden units per layer drives the model to sat-
uration quickly, with degrading performance on new tasks

4322



(the final validation accuracy is about 0.95 for the first task
and 0.62 for the last).

To check that new weights are being allocated for new
task, we measure the correlation between the task-specific
Fisher information matrices (Figure1). Cell (i, j) in these
matrices is< F̃i, F̃j >, where F̃i and F̃j are the normalized
Fisher information matrices for tasks i and j. If different
weights are given importance in these tasks, the matrices
will be orthogonal, and the cell (i, j) will be close to 0.

Figure1(a), shows the result on using the large network.
There are enough weights to allocate for the new tasks,
which means the Fisher information matrices can be orthog-
onal. Using the smaller network forces some parameters to
be (Figure1(b)) to be used for multiple tasks. As we are
using EWC with a high λ, we prefer remembering tasks,
which compromises performance. Also note that the more
tasks we add, the worse the correlation becomes (the bright
red cells in Figure1(b) at the bottom right end). This indi-
cates that the model has used almost all its capacity, and any
weight we try to allocate will have been already used for a
previously seen task.

The effect of our selective forgetting algorithm (section
2.3) is shown in Figure1(c). We observed that due to the
limited capacity, we may not be able to eliminate correlation
between weights for different tasks. The forgetting proce-
dure allows us to control it and direct it onto selected tasks
identified as unimportant, freeing space for those which
need to be retained.

2.2. The Scaling Parameter

The scaling factor λ plays an important role in EWC.
Setting this parameter is challenging in practice. Its value
directly influences the loss and performance varies widely
depending on the task and model architecture. To find the
optimal value, we must treat this as a hyperparameter. In-
deed, this is done in [9], where the validation data from pre-
vious tasks are used to select the value of λ which works
best. However, this would be not allowed in a strict con-
tinual learning setting where we lose access to all data for
previously seen tasks.

In our experiments, we first choose a high value for λ
which retains learned weights for the given model and task.
This is kept constant as new tasks are introduced.

It also must be noted that using a constant λ does not
reduce the algorithm to blindly allocating new weights for
every new task. Appendix 4.3 in [9] empirically demon-
strated that optimizing the EWC loss leads the model to
share weights among tasks when possible. To confirm that
our scheme to choose λ does not affect this property, we
trained the small network (H = 100) on controlled vari-
ations of the permuted MNIST tasks. Instead of applying
a fixed permutation on the entire image, we shuffle only a
fraction p of the pixels. Thus, for p close 0, the tasks will

be similar, while p ≈ 1 will lead to a permuting all the pix-
els in the image. Figure2 shows the results. A low value of
p causes a lower drop in performance, suggesting that the
model saves capacity by re-using weights for similar tasks.
As p is grows to 1, the tasks become increasingly dissimilar,
and more distinct hidden units are required to learn them all.
As we are using a small model, retaining the previous tasks
reduces the capacity and compromises performance on the
latter tasks. As control, we also train the model without
EWC using p = 0.2 and confirm that the model retains the
tasks only when using the EWC loss with the fixed scaling
factor.

Adjusting λ gives us a limited control over forgetting
previous tasks. However, it controls forgetting all previ-
ously learned tasks. Setting λ too low will lead to forget-
ting all tasks, while a high value will lead to remembering
them all. Instead of this, we would like to be able to spec-
ify which tasks in the history were important and remember
those while forgetting others to free capacity.

2.3. Weighted FIM Reconstruction

To control performance on selected tasks we decompose
the regularization term in the EWC loss into task-specific
parts.

EWC assumes that the data for the tasks are independent:

P[Dj |Di] = P[Dj ] ∀i, j ∈ [1, N ], j > i

Using this and the chain rule for Fisher information, we may
decompose F into task dependent components as:

FD1,...,DTN
=

N∑
i=1

FDi|D1,...,Di−1
=

N∑
i=1

FDi

Thus, the final Fisher information matrix (FIM) is the sum
of Fisher matrices per task.

We store the task-specific Fisher matrices. To selectively
forget a task, we use a ’remember vector’ τ ∈ [0, 1]N . τi =
1 indicates we want to remember the ith task, while τi = 0
may lead to forgetting the corresponding task (i.e., training
on TN+1 may overwrite the weights used for Ti)

With these, we construct a new weighting matrix F̂i =∑N
i=1 τiFDi

and use this in the EWC loss function:

LT (θ) = LTN+1
(θ) +

λ

2

∑
i

F̂i(θi − θ∗i )2

Figure2 shows the results of using this algorithm. As be-
fore we, train 10 tasks from the permuted MNIST dataset on
a small network (H = 100). Fig. 2(a) shows what happens
when we try to remember all the tasks. Initially the model
is plastic and uses as many hidden units as required to at-
tain the high validation accuracy. As we retain more tasks,

4323



Figure 1. Orthogonality of the task dependent FIMs with (a) H = 1000 (b) H = 1000, remembering all tasks and (c) H = 100 with
selective forgetting

Figure 2. Saturating a small network with tasks involving different
degrees of permutation

the effective capacity reduces and the model converges to a
lower validation accuracy.

The effect of not using EWC is shown in Figure2(b).
Gradient descent with dropout causes every new task to in-
terfere with previous ones (learned weights are overwrit-
ten). Once a task is learned, the validation accuracy on that
drops as soon as a new task is introduced.

Selective forgetting is shown in Fig. 2(c). The forget
policy in this experiment was: while learning tasks after
task 5, forget tasks 0, 1, 3 and 5. Clearly, the maximum
validation the slowly drops till task 5. At this point, we
forget using this policy and free capacity. For the next task,
the model quickly converges to a higher validation accuracy.
Also, the procedure forgets only the selected tasks. The
performance on tasks 2 and 4 are unchanged.

The final validation accuracies for the different settings
are shown in fig. 3. Remembering all tasks lead to a steady
drop, while direct gradient descent with dropout makes the
model work well only on the most recent task. With our
procedure, we can control which tasks should be forgotten.

Only those suffer the drop in accuracy, making space for the
important tasks.

3. Modeling Continual Face Recognition

In this section, we demonstrate a practical use of our
method on the problem of continual face recognition. This
also demonstrates a use of the algorithm for tasks more
complex than permuted MNIST digits. Consider the prob-
lem of developing an agent A which must recognize faces
over a long period of time. The agent lives in a world with
K environments. We model it as a stochastic process, ran-
domly moving across these environments. Each environ-
ment also has a set of members in it (a distinct set of N
people per environment). For example, these environments
may correspond to home, school, gym, etc., and the model
must move from one to the other, recognizing people it it.
At every timestep, A must do one of 2 things:
1. Recognize people: This corresponds toA entering an en-
vironment and ”meeting” a person there. We measure the
ability of the agent to do this by directly computing the ac-
curacy of the face recognition model on the validation sets
of people in the environment.
2. Learn a new set of people in the environment: The mem-
bers in an environment may change membership (in the ex-
ample, this may correspond to the agent changing school,
moving homes, etc.). If this occurs, the agent may forget
the identities of the previous set of people in that environ-
ment (we assume they will not return again).

In this setting, the agent must learn to handle at least K
tasks simultaneously. At no point in its lifetime, will it be
required to perform well on more thanK tasks. Also, selec-
tive forgetting is vital in this setting, i.e., we must be able to
specify which task we want the agent to forget, depending
on which environment sees a change in members.

One approach to solving this problem would be using
a large model with many classes recognizing all possible

4324



Figure 3. Validation curves on permuted MNIST tasks (a) remembering all tasks (b) SGD+dropout (c) Selective forgetting

Figure 4. Final validation accuracy (a) remember all tasks (b) SGD+dropout (c) selective forgetting

faces that might be encountered. Another approach would
be to use the embeddings and store identities in an auxiliary
data structure. Here, we propose using selective forgetting
as an interesting alternative, where a model performs well
by capitalizing on the fact that certain tasks will not be seen
again.

To implement this, we used the embeddings from a stan-
dard face recognition model [14]. These are embeddings
in R4096 obtained as the output of the fc7 layer in the
model. We useK classification heads (one corresponding to
each environment) which map the embeddings to a one-hot
person identity. 500 random identities from the MSCeleb
dataset [5] were chosen such that each person had at least
100 image samples. We used 40 samples for training and
60 for validation. These people were divided into 50 non-
overlapping groups, each corresponding to a different task
(10 people per task). Thus, for each task, we had a balanced
training set with 400 samples and a validation set with 600
samples. This may be a small number of samples on ab-
solute terms, but is sufficient, as we are using a pre-trained
feature extractor and each individual task is simple. Our
agent is modeled in a world with K = 4 environments.

At each timestep, we randomly move to one of these envi-
ronments. When a change in membership is encountered,
we simply forget the task learned at that environment and
replace it with the new task. Thus, at every timestep, the
model is well-trained on 4 active tasks.

To measure if the model performs well, we track perfor-
mance on the active tasks across time. Figure5(a) shows
the results. This shows the minimum validation accuracy
on the active tasks across time as new tasks are learned.
As selective forgetting focuses using the capacity on these
active tasks, performance on them remains relatively high.
The lower performance on the latter tasks while trying to re-
member everything pulls down performance on active tasks.

3.1. Fluctuations in Validation Curves

Figure5 shows the validation accuracy curves with and
without selective forgetting. For clarity, we show the ac-
curacy for 4 out of the 30 tasks. As we might expect, in
Figure5(b), the performance on the tasks rise on training,
is held high while it remains an active task on an environ-
ment, and drops when forgotten. There are also spikes in
the curve. These correspond to timesteps when new tasks

4325



Figure 5. Performance on the face recognition tasks. Validation accuracy on (a) active tasks (b) with forgetting (c) without forgetting

were learned. As we train on a new task, the performance
on the old one initially decreases. After the training, the
EWC is eventually minimized, which restores performance
on the old task. This effect can also be seen (a limited ex-
tent) in Figure3(a). As we are log the accuracy once every
5 rounds, these variations appear as short spikes.

An intriguing effect is the rise in accuracy for a new task.
In Figure5(c), task 15 and 20 performed better than task
5. This is unlike the behavior in the MNIST experiments,
where the model was steadily saturated with decreasing ac-
curacies on new tasks. In fact, there were 9 other instances
when the newly introduced task performed better than some
previous tasks. We attribute this to the fact that tasks in this
setting are not truly independent. Being able to classify 10
identities . With the permuted MNIST, we had much greater
control of the tasks, and could make them different from
each other. This would force the model to use new weights
for different tasks. However, if a model can classify faces
from one set of 10 identities, there is a significant chance
that it performs well on another set as well. This is par-
ticularly true here as we are using a fixed feature extractor
and the model is only finding a separating hyperplane. This
plane may work well for multiple sets of people. This also
supports the hypothesis that the scheme to set λ does not
cause blindly allocating new weights for every task (NOTE:
An experiment to confirm this would involve measuring the
task similarity and correlating this with the rise in the vali-
dation curves. This is not reported as the implementation is
currently incomplete).

4. Experiment Details

Experiments were run using small models, with up to 2
hidden layers of varying sizes with ReLU units. All training
was done with the Adam optimizer in TensorFlow.

We used a random hyperparameter search scheme. This
was used to find the values for the batch size, number of
epochs and learning rate. To reduce the size of the search

Hyperparameter Value
Learning rate 1e− 3
Batch size 100
Dropout 0.5
Epochs 200
EWC scaling (λ) 400

Table 1. Hyperparameters for permuted MNIST experiments

space, we used standard values for hyperparameters which
are known to work well: we use a dropout of 0.5, and fixed
values ε = 1e − 8 β1 = 0.9 and β2 = 0.999 for the Adam
optimizer (default in TensorFlow). The search scheme in-
volved trying 60 random combinations of values and select-
ing the one which minimized the sum of the task loss and
EWC loss.

4.1. MNIST Experiments

The model used for permuted MNIST experiments had
2 layers, 100 units each. We first used the hyperparame-
ter search every time the model is trained on a new task.
On doing this, we observed that the search returned simi-
lar hyperparameter values, across tasks. Hence, we use an
approximation of these values. This yielded similar perfor-
mance to using the search for every new task. These values
are shown in table 1. The images were normalized to the
range [0, 1] and flattened to R784 for training.

4.2. Face Recognition Experiment

The model in the face recognition experiment used 2
layers with 400 units each. The images we used were the
cropped and aligned faces from the MSCeleb dataset. Be-
fore training, we subtract the channel-wise mean to normal-
ize the images. A fixed EWC scaling of 4e6 was used for
all tasks. Unlike the MNIST experiment, we were unable
to find fixed hyperparameter values which worked across
all tasks. We suspect this is due to the varying complex-

4326



ity of the face classification task. Certain sets of faces may
be easier to classify, and the model converges quickly for
those tasks. It was also noted the convergence time (num-
ber of epochs from the hyperparameter search) increased
as more tasks were learned up till the first K tasks (all of
which must be remembered). After this, the convergence
time varied, depending on the simplicity of the new task or
its similarity with previous tasks (this is just the variation in
learning the new task from the current parameter setting).

5. Future Work

The problems described here show relatively simple for-
get policies. The MNIST experiments essentially used
an ad-hoc policy to demonstrate forgetting, while the face
recognition model made many simplifying assumptions to
identify exactly which tasks can be forgotten. This is not
realistic. We would like the model to identify which tasks
are important on its own. One possible way to do this would
be to use another model which scans the history and outputs
an attention vector indicating useful tasks.

6. Conclusion

In this project, we introduced the idea selective forget-
ting. We showed a method to implement it with a simple
modification to a known algorithm (EWC). Its properties
were analyzed with experiments on permuted MNIST tasks.
We also showed its application to save capacity in a more
complex problem: continual face recognition. This used
a model to continually classify faces from the MSCeleb
dataset. From the results and benefits observed, selective
forgetting seems to be an interesting feature and a useful
component in an efficient continual learning agent.

References
[1] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha,

A. A. Rusu, A. Pritzel, and D. Wierstra. Pathnet: Evolution
channels gradient descent in super neural networks. arXiv
preprint arXiv:1701.08734, 2017.

[2] R. M. French. Catastrophic forgetting in connectionist net-
works. Trends in cognitive sciences, 3(4):128–135, 1999.

[3] A. Gepperth and C. Karaoguz. A bio-inspired incremental
learning architecture for applied perceptual problems. Cog-
nitive Computation, 8(5):924–934, 2016.

[4] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout networks. arXiv preprint
arXiv:1302.4389, 2013.

[5] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. MS-Celeb-1M:
A dataset and benchmark for large scale face recognition. In
European Conference on Computer Vision. Springer, 2016.

[6] G. E. Hinton and D. C. Plaut. Using fast weights to deblur
old memories. In Proceedings of the ninth annual conference
of the Cognitive Science Society, pages 177–186, 1987.

[7] N. Kamra, U. Gupta, and Y. Liu. Deep generative dual
memory network for continual learning. arXiv preprint
arXiv:1710.10368, 2017.

[8] R. Kemker, A. Abitino, M. McClure, and C. Kanan. Measur-
ing catastrophic forgetting in neural networks. arXiv preprint
arXiv:1708.02072, 2017.

[9] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Des-
jardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho,
A. Grabska-Barwinska, et al. Overcoming catastrophic for-
getting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526, 2017.

[10] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain dam-
age. In Advances in neural information processing systems,
pages 598–605, 1990.

[11] Z. Li and D. Hoiem. Learning without forgetting. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
2017.

[12] M. McCloskey and N. J. Cohen. Catastrophic interference
in connectionist networks: The sequential learning problem.
In Psychology of learning and motivation, volume 24, pages
109–165. Elsevier, 1989.

[13] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter.
Continual lifelong learning with neural networks: A review.
arXiv preprint arXiv:1802.07569, 2018.

[14] O. M. Parkhi, A. Vedaldi, A. Zisserman, et al. Deep face
recognition. In BMVC, volume 1, page 6, 2015.

[15] D. C. Plaut. Relearning after damage in connectionist net-
works: Toward a theory of rehabilitation. Brain and lan-
guage, 52(1):25–82, 1996.

[16] S.-A. Rebuffi, A. Kolesnikov, and C. H. Lampert. icarl: In-
cremental classifier and representation learning. In Proc.
CVPR, 2017.

[17] A. Robins. Consolidation in neural networks and in the
sleeping brain. Connection Science, 8(2):259–276, 1996.

[18] A. Seff, A. Beatson, D. Suo, and H. Liu. Continual
learning in generative adversarial nets. arXiv preprint
arXiv:1705.08395, 2017.

[19] H. Shin, J. K. Lee, J. Kim, and J. Kim. Continual learning
with deep generative replay. In Advances in Neural Informa-
tion Processing Systems, pages 2994–3003, 2017.

[20] F. Zenke, B. Poole, and S. Ganguli. Continual learning
through synaptic intelligence. In International Conference
on Machine Learning, pages 3987–3995, 2017.

4327


